Medidas de dispersion
- josuechun
- 18 jun 2015
- 1 Min. de lectura
Las medidas de dispersión, también llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio de un número si las diferentes puntuaciones de una variable están muy alejadas de la media. Cuanto mayor sea ese valor, mayor será la variabilidad, y cuanto menor sea, más homogénea será a la media. Así se sabe si todos los casos son parecidos o varían mucho entre ellos.
Para calcular la variabilidad que una distribución tiene respecto de su media, se calcula la media de las desviaciones de las puntuaciones respecto a la media aritmética. Pero la suma de las desviaciones es siempre cero, así que se adoptan dos clases de estrategias para salvar este problema. Una es tomando las desviaciones en valor absoluto (desviación media) y otra es tomando las desviaciones al cuadrado (varianza).
Requisitos del rango
Ordenamos los números según su tamaño.
Restamos el valor mínimo del valor máximo

Varianza
La varianza es una medida estadística que mide la dispersión de los valores respecto a un valor central (media), es decir, es el cuadrado de las desviaciones:

Desviación
La varianza a veces no se interpreta claramente, ya que se mide en unidades cuadráticas. Para evitar ese problema se define otra medida de dispersión, que es ladesviación típica, o desviación estándar, que se halla como la raíz cuadrada positiva de la varianza. La desviación típica informa sobre la dispersión de los datos respecto al valor de la media; cuanto mayor sea su valor, más dispersos estarán los datos. Esta medida viene representada en la mayoría de los casos porS, dado que es su inicial de su nominación en inglés.
Comments